Algorithm 🍊⭐
Published:
Templates of competitive programming.
Basic / 基本
Brute-Force / 全探索
Bit Exhaustive Search / ビット全探索
vector<int> arr(N);
void search(int n) {
for (int i=0; i<(1<<n); ++i) {
for (int j=0; j<n; ++j) {
if (i&(1<<j))
"<arr[j]...>";
}
}
}
Permutation Exhaustive Search / 順列全探索
vector<int> arr(N);
void search(int n) {
do {
for (int i=0; i<n; ++i)
"<arr[i]...>";
} while (next_permutation(arr.begin(), arr.begin()+n));
}
DFS Exhaustive Search / DFS全探索
vector<int> arr(N);
void search(int p, int n) {
if (p==n) {
for (int i=0; i<n; ++i)
"<arr[i]...>";
return;
}
for ("<next value i>") {
if ("<pruning>")
continue;
arr[p] = i;
search(p+1, n);
arr[p] = 0;
}
}
Backtracking / バックトラッキング
vector<int> arr(N);
bool search(int p, int n) {
if (p==n) {
if ("<satisfied>")
return true;
return false;
}
for ("<next value i>") {
if ("<pruning>")
continue;
arr[p] = i;
if (search(p+1, n))
return true;
arr[p] = 0;
}
return false;
}
Basic Method / 基本的手法
Greedy Algorithm / 貪欲法
void solve() {
"<preprocess>";
for (int i=0; i<N; ++i) {
"<greedy>";
}
}
Binary Search / 二分探索
vector<int> arr(N);
int search(int n, int t) {
int l=-1, r=n;
while (r-l>1) {
int m = (l+r)/2;
if (t<arr[m])
r = m;
else
l = m;
}
return l;
}
bool check(int x) {
"<return true or false>";
}
int search(int n) {
int l=-1, r=n;
while (r-l>1) {
int m = (l+r)/2;
if (check(m))
r = m;
else
l = m;
}
return l;
}
void search() {
vector<int> v;
vector<int>::iterator it1 = lower_bound(v.begin(), v.end(), t); // first >= t
vector<int>::iterator it2 = upper_bound(v.begin(), v.end(), t); // first > t
}
void search2() {
set<int> s;
set<int>::iterator it1 = s.lower_bound(t); // first >= t
set<int>::iterator it2 = s.upper_bound(t); // first > t
}
// it!=v.end(): check
// *it: value
// distance(v.begin(), it): position
// prev(it): previous
// next(it): next
Divide and Conquer / 分割統治法
vector<int> arr(N);
void rec(int l, int r) {
int m = (l+r)/2;
if (l==r)
"<base case>";
rec(l, m);
rec(m+1, r);
"<combine>";
}
Dynamic Programming / 動的計画法
Knapsack DP / ナップサックDP
vector<int> dp(N);
void solve(int n) {
"<base case>";
for (int i=1; i<=n; ++i) {
dp[i] = "<combination of dp[<=i] >";
}
}
vector<vector<int>> dp(N, vector<int>(M));
void solve(int n, int m) {
"<base case>";
for (int i=1; i<=n; ++i) {
for (int j=1; j<=m; ++j) {
dp[i][j] = "<combination of dp[<=i][<=j] >";
}
}
}
Digit Dp / 桁DP
int dp[N][M][2];
void solve(int n, int m) {
"<base case>";
for (int i=0; i<n; ++i) {
for (int j=0; j<m; ++j) {
"<transfer dp[i][j][0] to dp[i+1][target (0~9) ][0] >";
"<transfer dp[i][j][1] to dp[i+1][target (0~di)][0] >";
"<transfer dp[i][j][1] to dp[i+1][target (di) ][1] >";
}
}
}
Interval DP / 区間DP
vector<vector<int>> dp(N, vector<int>(N, -1));
int rec(int l, int r) {
if (dp[l][r]!=-1)
return dp[l][r];
if ("<base case>")
return dp[l][r] = "<value>";
int a = "<combination of rec(l+1, r-1), rec(l, i), rec(i+1, r), ...)>";
return dp[l][r] = a;
}
Bit DP / ビットDP
vector<vector<int>> dp((1<<N), vector<int>(N, -1));
int rec(int S, int v, int n) {
if (dp[S][v]!=-1)
return dp[S][v];
if ("<base case>")
return dp[S][v] = "<value>";
int a = "<combination of rec(S^(1<<v), i, n), ...>";
return dp[S][v] = a;
}
Data Structure / データ構造
Basic Data Structure / 基本的データ構造
void binary_heap() {
priority_queue<int> q;
// priority_queue<int, vector<int>, greater<int>> q;
q.push("<value>");
q.pop();
int "<value>" = q.top();
}
void binary_search_tree() {
set<int> s;
s.insert("<value>");
s.erase("<value>");
set<int>::iterator "<iterator>" = s.find("<value>");
}
void binary_search_tree2() {
map<int, int> m;
m.insert({"<key>", "<value>"});
m.erase("<key>");
map<int, int>::iterator "<iterator>" = m.find("<key>");
m["<key>"] = "<value>";
int "<value>" = map["<key>"];
}
void hash_table() {
unordered_set<int> s;
s.insert("<value>");
s.erase("<value>");
unordered_set<int>::iterator "<iterator>" = s.find("<value>");
}
void hash_table2() {
unordered_map<int, int> m;
m.insert({"<key>", "<value>"});
m.erase("<key>");
unordered_map<int, int>::iterator "<iterator>" = m.find("<key>");
m["<key>"] = "<value>";
int "<value>" = m["<key"];
}
Disjoint Set Union / Union-Find木
vector<int> par(N), siz(N);
void make_set(int v) {
par[v] = v;
siz[v] = 1;
}
int find_set(int v) {
if (par[v] == v)
return v;
return par[v] = find_set(par[v]);
}
void union_set(int a, int b) {
a = find_set(a);
b = find_set(b);
if (a != b) {
if (siz[a] < siz[b])
swap(a, b);
par[b] = a;
siz[a] += siz[b];
}
}
Segment Tree / セグメント木
vector<int> arr(N), tree(4*N);
void build(int v, int tl, int tr) {
if (tl==tr) {
tree[v] = arr[tl];
return;
}
int tm = (tl+tr)/2;
build(v*2+1, tl, tm);
build(v*2+2, tm+1, tr);
tree[v] = "<merge tree[v*2+1] and tree[v*2+2]>";
}
void update(int v, int tl, int tr, int pos, int x) {
if (tl==tr) {
tree[v] = x;
return;
}
int tm = (tl+tr)/2;
if (pos<=tm)
update(v*2+1, tl, tm, pos, x);
else
update(v*2+2, tm+1, tr, pos, x);
tree[v] = "<merge tree[v*2+1] and tree[v*2+2]>";
}
int query(int v, int tl, int tr, int l, int r) {
if (l>r)
return "<identity>";
if (tl==l && tr==r)
return tree[v];
int tm = (tl+tr)/2;
int q1 = query(v*2+1, tl, tm, l, min(r, tm));
int q2 = query(v*2+2, tm+1, tr, max(l, tm+1), r);
return "<merge q1 and q2>";
}
vector<int> arr(N), tree(4*N), lazy(4*N), mark(4*N);
void build(int v, int tl, int tr) {
if (tl==tr) {
tree[v] = arr[tl];
return;
}
int tm = (tl+tr)/2;
build(v*2+1, tl, tm);
build(v*2+2, tm+1, tr);
tree[v] = "<merge tree[v*2+1] and tree[v*2+2]>";
}
void push(int v, int tl, int tr) {
if (!mark[v])
return;
int tm = (tl+tr)/2;
tree[v*2+1] = "<update with lazy[v]>";
tree[v*2+2] = "<update with lazy[v]>";
lazy[v*2+1] = lazy[v];
lazy[v*2+2] = lazy[v];
mark[v*2+1] = 1;
mark[v*2+2] = 1;
mark[v] = 0;
}
void update(int v, int tl, int tr, int l, int r, int x) {
if (l>r)
return;
if (tl==l && tr==r) {
tree[v] = "<update with x>";
lazy[v] = "<update with x>";
mark[v] = 1;
return;
}
push(v, tl, tr);
int tm = (tl+tr)/2;
update(v*2+1, tl, tm, l, min(r, tm), x);
update(v*2+2, tm+1, tr, max(l, tm+1), r, x);
tree[v] = "<merge tree[v*2+1] and tree[v*2+2]>";
}
int query(int v, int tl, int tr, int l, int r) {
if (l>r)
return "<identity>";
if (tl==l && tr==r)
return tree[v];
push(v, tl, tr);
int tm = (tl+tr)/2;
int q1 = query(v*2+1, tl, tm, l, min(r, tm));
int q2 = query(v*2+2, tm+1, tr, max(l, tm+1), r);
return "<merge q1 and q2>";
}
Binary Indexed Tree / フェニック木
vector<int> arr(N), tree(N);
void build(int n) {
for (int i=0; i<n; ++i) {
tree[i] = "<merge tree[i] and arr[i]>";
int r = i|(i+1);
if (r<n)
tree[r] = "<merge tree[r] and tree[i]>";
}
}
int query(int r) {
int s = 0;
while (r>=0) {
s = "<merge s and tree[r]>";
r = (r&(r+1))-1;
}
return s;
}
void update(int p, int x, int n) {
while (p<n) {
tree[p] = "<merge tree[p] and x>";
p = p|(p+1);
}
}
Sqrt Decomposition / 平方分割
vector<int> arr(N), buc(N);
void build(int n) {
int s = (int)ceil(sqrt(n));
for (int i=0; i<s; ++i) {
for (int j=i*s; j<(i+1)*s && j<n; ++j)
buc[i] = "<merge buc[i] and arr[j]>";
}
}
int query(int l, int r, int n) {
int s = (int)ceil(sqrt(n));
int q=0, bl=l/s, br=r/s;
if (bl==br) {
for (int i=l; i<=r; ++i)
q = "<merge q and arr[i]>";
return q;
}
for (int i=l; i<(bl+1)*s; ++i)
q = "<merge q and arr[i]>";
for (int i=bl+1; i<br; ++i)
q = "<merge q and buc[i]>";
for (int i=br*s; i<=r; ++i)
q = "<merge q and arr[i]>";
return q;
}
Graph / グラフ
Graph Traversal / グラフ探索
Depth First Search / 深さ優先探索
vector<vector<int>> adj(N);
vector<int> vis(N), dis(N, INF), par(N, -1);
void dfs(int v, int d, int p) {
vis[v] = 1;
dis[v] = d;
par[v] = p;
for (int u : adj[v]) {
if (!vis[u]) {
dfs(u, d+1, v);
}
}
}
Breadth First Search / 幅優先探索
vector<vector<int>> adj(N);
vector<int> vis(N), dis(N, INF), par(N, -1);
void bfs(int v) {
queue<int> q;
vis[v] = 1;
dis[v] = 0;
par[v] = -1;
q.push(v);
while (!q.empty()) {
int v = q.front();
q.pop();
for (int u : adj[v]) {
if (!vis[u]) {
vis[u] = 1;
dis[u] = dis[v] + 1;
par[u] = v;
q.push(u);
}
}
}
}
Topological Sort / トポロジカルソート
vector<vector<int>> adj(N);
vector<int> vis(N), ans;
void dfs(int v) {
vis[v] = 1;
for (int u : adj[v]) {
if (!vis[u])
dfs(u);
}
ans.push_back(v);
}
void topological_sort(int n) {
for (int i=0; i<n; ++i) {
if (!vis[i])
dfs(i);
}
reverse(ans.begin(), ans.end());
}
Shortest Path / 最短経路
Dijkstra’s Algorithm / ダイクストラ法
vector<vector<int>> adj(N, vector<int>(N, INF));
vector<int> vis(N), dis(N, INF), par(N, -1);
void dijkstra(int s, int n) {
dis[s] = 0;
for (int i=0; i<n; ++i) {
int k = -1;
for (int j=0; j<n; ++j) {
if (!vis[j] && (k==-1 || dis[j]<dis[k]))
k = j;
}
if (dis[k]==INF)
return;
vis[k] = 1;
for (int j=0; j<n; ++j) {
if (dis[k]+adj[k][j]<dis[j]) {
dis[j] = dis[k] + adj[k][j];
par[j] = k;
}
}
}
}
vector<vector<pii>> adj(N);
vector<int> dis(N, INF), par(N, -1);
void dijkstra(int s) {
priority_queue<pii, vector<pii>, greater<pii>> q;
dis[s] = 0;
q.push({0, s});
while (!q.empty()) {
int v = q.top().second;
int d_v = q.top().first;
q.pop();
if (d_v!=dis[v])
continue;
for (pii e : adj[v]) {
int u = e.first;
int w = e.second;
if (dis[v]+w<dis[u]) {
dis[u] = dis[v] + w;
par[u] = v;
q.push({dis[u], u});
}
}
}
}
0-1 BFS / 0-1 BFS
vector<vector<pii>> adj(N);
vector<int> dis(N, INF), par(N, -1);
void bfs(int v) {
deque<int> q;
dis[v] = 0;
q.push_front(v);
while (!q.empty()) {
int v = q.front();
q.pop_front();
for (pii e : adj[v]) {
int u = e.first;
int w = e.second;
if (dis[v]+w<dis[u]) {
dis[u] = dis[v] + w;
par[u] = v;
if (w==1)
q.push_back(u);
else
q.push_front(u);
}
}
}
}
Bellman–Ford Algorithm / ベルマン–フォード法
struct edge{
int a, b, w;
};
vector<edge> edges;
vector<int> dis(N, INF), par(N, -1);
void bellman_ford(int s, int n) {
dis[s] = 0;
int cnt = 0;
for (int i=0; i<n; ++i) {
bool any = 0;
for (edge e : edges) {
if (dis[e.a]!=INF && dis[e.a]+e.w<dis[e.b]) {
dis[e.b] = dis[e.a] + e.w;
par[e.b] = e.a;
any = 1;
}
}
if (!any)
break;
cnt += 1;
}
"<negative cycle: cnt==n>";
}
Floyd–Warshall Algorithm / ワーシャル–フロイド法
vector<vector<int>> dis(N, vector<int>(N, INF)), par(N, vector<int>(N, -1));
void floyd_warshall(int n) {
"<each edge: dis[v][u]=w, par[v][u]=v >";
"<each vert: dis[v][v]=0, par[v][v]=v >";
for (int k=0; k<n; ++k) {
for (int i=0; i<n; ++i) {
for (int j=0; j<n; ++j) {
if (dis[i][k]<INF && dis[k][j]<INF && dis[i][k]+dis[k][j]<dis[i][j]) {
dis[i][j] = dis[i][k] + dis[k][j];
par[i][j] = par[k][j];
}
}
}
}
"<negative cycle: dis[i][i]<0 >";
}
Minimum Spanning Tree / 最小全域木
Prim’s Algorithm / プリム法
vector<vector<int>> adj(N, vector<int>(N, INF));
vector<int> vis(N), dis(N, INF), par(N, -1);
int prim(int s, int n) {
int wt = 0;
dis[s] = 0;
for (int i=0; i<n; ++i) {
int k = -1;
for (int j=0; j<n; ++j) {
if (!vis[j] && (k==-1 || dis[j]<dis[k]))
k = j;
}
if (dis[k]==INF)
return INF;
vis[k] = 1;
wt += dis[k];
for (int j=0; j<n; ++j) {
if (!vis[j] && adj[k][j]<dis[j]) {
dis[j] = adj[k][j];
par[j] = k;
}
}
}
return wt;
}
vector<vector<pii>> adj(N);
vector<int> vis(N), dis(N, INF), par(N, -1);
int prim(int s) {
int wt = 0;
priority_queue<pii, vector<pii>, greater<pii>> q;
dis[s] = 0;
q.push({0, s});
while (!q.empty()) {
int v = q.top().second;
q.pop();
if (vis[v])
continue;
vis[v] = 1;
wt += dis[v];
for (pii e : adj[v]) {
int u = e.first;
int w = e.second;
if (!vis[u] && w<dis[u]) {
dis[u] = w;
par[u] = v;
q.push({dis[u], u});
}
}
}
return wt;
}
Kruskal’s Algorithm / クラスカル法
vector<int> par(N), siz(N);
void make_set(int v) {
par[v] = v;
siz[v] = 1;
}
int find_set(int v) {
if (par[v] == v)
return v;
return par[v] = find_set(par[v]);
}
void union_set(int a, int b) {
a = find_set(a);
b = find_set(b);
if (a != b) {
if (a < b)
swap(a, b);
par[b] = a;
siz[a] += siz[b];
}
}
struct edge {
int a, b, w;
bool operator<(edge const& other) {
return w < other.w;
}
};
vector<edge> edges, mst;
int kruskal() {
int wt = 0;
sort(edges.begin(), edges.end());
for (edge e : edges) {
if (find_set(e.a) != find_set(e.b)) {
wt += e.w;
mst.push_back(e);
union_set(e.a, e.b);
}
}
return wt;
}
Connectivity / 連結性
Connected Component / 連結成分
vector<vector<int>> adj(N);
vector<int> vis(N), cmp(N);
void dfs(int v, int c) {
vis[v] = 1;
cmp[v] = c;
for (int u : adj[v]) {
if (!vis[u])
dfs(u, c);
}
}
int cc(int n) {
int cnt = 0;
for (int i=0; i<n; ++i) {
if (!vis[i]) {
dfs(i, i);
cnt += 1;
}
}
return cnt;
}
Strongly Connected Component / 強連結成分
vector<vector<int>> adj(N), adj_r(N);
vector<int> q, vis(N), cmp(N);
void dfs1(int v) {
vis[v] = 1;
for (int u : adj[v]) {
if (!vis[u])
dfs1(u);
}
q.push_back(v);
}
void dfs2(int v, int c) {
vis[v] = 1;
cmp[v] = c;
for (int u : adj_r[v]) {
if (!vis[u])
dfs2(u, c);
}
}
int scc(int n) {
int cnt = 0;
for (int i=0; i<n; ++i) {
if (!vis[i])
dfs1(i);
}
reverse(q.begin(), q.end());
vis.assign(n, 0);
for (int i : q) {
if (!vis[i]) {
dfs2(i, i);
cnt += 1;
}
}
return cnt;
}
Bridge / 橋
vector<vector<int>> adj(N);
vector<int> vis(N), tin(N), low(N);
int timer = 0;
void dfs(int v, int p) {
vis[v] = 1;
tin[v] = low[v] = timer++;
for (int u : adj[v]) {
if (u==p)
continue;
if (vis[u])
low[v] = min(low[v], tin[u]);
else {
dfs(u, v);
low[v] = min(low[v], low[u]);
if (low[u]>tin[v]) {
"<bridge: v-u >";
}
}
}
}
Articulation Point / 関節点
vector<vector<int>> adj(N);
vector<int> vis(N), tin(N), low(N);
int timer = 0;
void dfs(int v, int p) {
vis[v] = 1;
tin[v] = low[v] = timer++;
int cld = 0;
for (int u : adj[v]) {
if (u==p)
continue;
if (vis[u])
low[v] = min(low[v], tin[u]);
else {
dfs(u, v);
low[v] = min(low[v], low[u]);
if (p!=-1 && low[u]>=tin[v]) {
"<articulation point: v >";
}
cld += 1;
}
}
if (p==-1 && cld>1) {
"<articulation point: v >";
}
}
Network Flow / ネットワークフロー
Maximum Flow / 最大流
vector<vector<int>> adj(N), cap(N, vector<int>(N));
vector<int> vis(N, 0), par(N, -1);
int bfs(int s, int t) {
fill(vis.begin(), vis.end(), 0);
fill(par.begin(), par.end(), -1);
queue<pii> q;
q.push({s, INF});
vis[s] = 1;
while (!q.empty()) {
int v = q.front().first;
int f_v = q.front().second;
q.pop();
for (int u : adj[v]) {
if (!vis[u] && cap[v][u]>0) {
int f_u = min(f_v, cap[v][u]);
q.push({u, f_u});
vis[u] = 1;
par[u] = v;
if (u==t)
return f_u;
}
}
}
return 0;
}
int max_flow(int s, int t) {
"<each edge: adj[v].pb(u) adj[u].pb(v) >";
"<each edge: cap[v][u]=c cap[u][v]=0 >";
int flow=0, f=0;
while (f=bfs(s, t)) {
flow += f;
int cur = t;
while (cur!=s) {
int pre = par[cur];
cap[pre][cur] -= f;
cap[cur][pre] += f;
cur = pre;
}
}
return flow;
}
Minimum-Cost Flow / 最小費用流
vector<vector<pii>> adj(N);
vector<int> dis(N), par(N), pot(N);
vector<vector<int>> cap(N, vector<int>(N));
int dijkstra(int s, int t, int n) {
fill(dis.begin(), dis.end(), INF);
fill(par.begin(), par.end(), -1);
priority_queue<pii, vector<pii>, greater<pii>> q;
q.push({0, s});
dis[s] = 0;
while (!q.empty()) {
int v = q.top().second;
int d_v = q.top().first;
q.pop();
if (d_v!=dis[v])
continue;
for (pii e : adj[v]) {
int to = e.first;
int len = e.second;
if (dis[v]+len+pot[v]-pot[to]<dis[to] && cap[v][to]>0) {
dis[to] = dis[v]+len+pot[v]-pot[to];
par[to] = v;
q.push({dis[to], to});
}
}
}
for (int i=0; i<n; ++i)
pot[i] += dis[i];
return pot[t];
}
// vector<vector<int>> adj(N, vector<int>(N, INF));
// vector<int> vis(N), dis(N), par(N), pot(N);
// vector<vector<int>> cap(N, vector<int>(N));
// int dijkstra(int s, int t, int n) {
// fill(vis.begin(), vis.end(), 0);
// fill(dis.begin(), dis.end(), INF);
// fill(par.begin(), par.end(), -1);
// dis[s] = 0;
// for (int i=0; i<n; ++i) {
// int k = -1;
// for (int j=0; j<n; ++j) {
// if (!vis[j] && (k==-1 || dis[j]<dis[k]))
// k = j;
// }
// if (dis[k]==INF)
// return INF;
// vis[k] = 1;
// for (int j=0; j<n; ++j) {
// if (dis[k]+adj[k][j]+pot[k]-pot[j]<dis[j] && cap[k][j]>0) {
// dis[j] = dis[k]+adj[k][j]+pot[k]-pot[j];
// par[j] = k;
// }
// }
// }
// for (int i=0; i<n; ++i)
// pot[i] += dis[i];
// return pot[t];
// }
int min_cost_flow(int s, int t, int k, int n) {
"<each edge: adj[v].pb(u,w) adj[u].pb(v,-w) >";
"<each edge: cap[v][u]=c cap[u][v]=0 >";
int cost=0, flow=0;
while (flow<k) {
int m_c = dijkstra(s, t, n);
int m_f = k - flow;
if (m_c==INF)
return -1;
int cur=t, pre=-1;
while (cur!=s) {
pre = par[cur];
m_f = min(m_f, cap[pre][cur]);
cur = pre;
}
cost += m_c * m_f;
flow += m_f;
cur = t;
while (cur!=s) {
pre = par[cur];
cap[pre][cur] -= m_f;
cap[cur][pre] += m_f;
cur = pre;
}
}
return cost;
}
Bipartite Matching / 二部マッチング
vector<vector<int>> adj(N1);
vector<int> vis(N1), mat(N2, -1);
bool dfs(int v) {
vis[v] = 1;
for (int u : adj[v]) {
int w = mat[u];
if (w==-1 || (!vis[w] && dfs(w))) {
mat[u] = v;
return true;
}
}
return false;
}
int bipartite(int n) {
int res = 0;
for (int i=0; i<n; ++i) {
fill(vis.begin(), vis.end(), 0);
if (dfs(i))
res += 1;
}
return res;
}
Tree Algorithm / 木アルゴリズム
Tree Diameter / 木の直径
vector<vector<int>> adj(N);
vector<int> par(N);
pair<int, int> dfs(int v, int d, int p) {
par[v] = p;
pair<int, int> res{d, v};
for (int u : adj[v]) {
if (u!=p)
res = max(res, dfs(u, d+1, v));
}
return res;
}
vector<int> tree_diameter() {
vector<int> ans;
int s = dfs(0, 0, -1).second;
int t = dfs(s, 0, -1).second;
while (t!=-1) {
ans.push_back(t);
t = par[t];
}
return ans;
}
Tree DP / 木DP
vector<vector<int>> adj(N);
vector<vector<int>> dp(N, vector<int>(S));
void dfs(int v, int p) {
for (int u : adj[v]) {
if (u==p)
continue;
dfs(u, v);
dp[v][i] = "<combination of dp[u][j], ...>";
}
}
Tree Divide and Conquer / 木の分割統治法
vector<vector<int>> adj(N);
vector<int> siz(N), cen(N);
void calsize(int v, int p) {
siz[v] = 1;
for (int u : adj[v]) {
if (u==p || cen[u])
continue;
calsize(u, v);
siz[v] += siz[u];
}
}
int centroid(int v, int p, int t) {
for (int u : adj[v]) {
if (u==p || cen[u])
continue;
if (siz[u]>t/2)
return centroid(u, v, t);
}
return v;
}
void rec(int v) {
calsize(v, -1);
int c = centroid(v, -1, siz[v]);
cen[c] = 1;
for (int u : adj[c]) {
if (cen[u])
continue;
rec(u);
"<combine>";
}
}
Lowest Common Ancestor / 最近共通祖先
vector<vector<int>> adj(N), par(LOG_N, vector<int>(N, -1));
vector<int> dep(N);
void dfs(int v, int p, int d) {
par[0][v] = p;
dep[v] = d;
for (int u : adj[v]) {
if (u!=p)
dfs(u, v, d+1);
}
}
void init(int n) {
dfs(0, -1, 0);
int l_n = int(log2(n))+1;
for (int k=1; k<l_n; ++k) {
for (int i=0; i<n; ++i) {
if (par[k-1][i]==-1)
par[k][i] = -1;
else
par[k][i] = par[k-1][par[k-1][i]];
}
}
}
int lca(int a, int b, int n) {
if (dep[a]<dep[b])
swap(a, b);
int l_n = int(log2(double(n)))+1;
for (int k=0; k<l_n; ++k) {
if (((dep[a]-dep[b])>>k) & 1)
a = par[k][a];
}
if (a==b)
return a;
for (int k=l_n-1; k>=0; --k) {
if (par[k][a]!=par[k][b]) {
a = par[k][a];
b = par[k][b];
}
}
return par[0][a];
}
vector<vector<int>> adj(N);
vector<int> arr, dep(N), occ(N, -1), seg(8*N);
void dfs(int v, int p, int h) {
dep[v] = h;
occ[v] = arr.size();
arr.push_back(v);
for (int u : adj[v]) {
if (u!=p)
dfs(u, v, h+1);
arr.push_back(v);
}
}
void build(int v, int tl, int tr) {
if (tl==tr) {
seg[v] = arr[tl];
return;
}
int tm = (tl+tr)/2;
build(v*2+1, tl, tm);
build(v*2+2, tm+1, tr);
int t1=seg[v*2+1], t2=seg[v*2+2];
seg[v] = (dep[t1]<dep[t2])?t1:t2;
}
int query(int v, int tl, int tr, int l, int r) {
if (l>tr || r<tl)
return -1;
if (l==tl && r==tr)
return seg[v];
int tm = (tl+tr)/2;
int q1 = query(v*2+1, tl, tm, l, min(r, tm));
int q2 = query(v*2+2, tm+1, tr, max(l, tm+1), r);
if (q1==-1)
return q2;
if (q2==-1)
return q1;
return (dep[q1]<dep[q2])?q1:q2;
}
void init(int s) {
dfs(s, -1, 0);
build(0, 0, arr.size()-1);
}
int lca(int a, int b) {
int l=occ[a], r=occ[b];
if (l>r)
swap(l, r);
return query(0, 0, arr.size()-1, l, r);
}
Math / 数学
Divisor / 約数
Euclidean Algorithm / ユークリッドの互除法
int gcd(int a, int b) {
if (b==0)
return a;
return gcd(b, a%b);
}
int extgcd(int a, int b, int& x, int& y) {
if (b==0) {
x = 1;
y = 0;
return a;
}
int g, x1, y1;
g = extgcd(b, a%b, x1, y1);
x = y1;
y = x1 - y1*(a/b);
return g;
}
Divisor Enumeration / 約数列挙
vector<int> divisor(int n) {
vector<int> res;
for (int i=1; i*i<=n; ++i) {
if (n%i==0) {
res.push_back(i);
if (n/i!=i)
res.push_back(n/i);
}
}
sort(res.begin(), res.end());
return res;
}
Prime Factorization / 素因数分解
vector<pii> factor(int n) {
vector<pii> res;
for (int i=2; i*i<=n; ++i) {
if (n%i!=0)
continue;
int p = 0;
while (n%i==0) {
n /= i;
p += 1;
}
res.push_back({i, p});
}
if (n!=1)
res.push_back({n, 1});
return res;
}
Euler’s Totient Function / オイラー関数
int euler_phi(int n) {
int res = n;
for (int i=2; i*i<=n; ++i) {
if (n%i==0) {
res = res * (i-1) / i;
while (n%i==0)
n /= i;
}
}
if (n!=1)
res = res * (n-1) / n;
return res;
}
Prime / 素数
Primality Test / 素数判定
bool isPrime(int n) {
for (int i=2; i*i<=n; ++i) {
if (n%i==0)
return false;
}
return true;
}
Sieve of Eratosthenes / エラトステネスの篩
vector<bool> isPrime(N, 1);
void sieve(int n) {
for (int i=2; i*i<=n; ++i) {
if (!isPrime[i])
continue;
for (int j=i*i; j<=n; j+=i)
isPrime[j] = 0;
}
}
Segmented Sieve / 区分篩
vector<bool> isPrime_1(N1, 1), isPrime_2(N2, 1);
void segment_sieve(int l, int r) {
for (int i=2; i*i<=r; ++i) {
if (isPrime_1[i]) {
for (int j=i*i; j*j<=r; j+=i)
isPrime_1[j] = 0;
for (int j=max(i*i, (l+i-1)/i*i); j<=r; j+=i)
isPrime_2[j-l] = 0;
}
}
}
Exponentiation / べき乗
Fast Exponentiation / 高速累乗
int binpow(int x, int n, int mod) {
int res = 1;
while (n>0) {
if (n&1)
res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
Matric Exponentiation / 行列累乗
typedef vector<int> vec;
typedef vector<vec> mat;
mat matmul(mat &A, mat &B, int m) {
mat C(A.size(), vec(B[0].size()));
for (int i=0; i<A.size(); ++i) {
for (int j=0; j<B[0].size(); ++j) {
for (int k=0; k<A[0].size(); ++k)
C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % m;
}
}
return C;
}
mat matpow(mat A, int n, int m) {
mat B(A.size(), vec(A.size()));
for (int i=0; i<B.size(); ++i)
B[i][i] = 1;
while (n>0) {
if (n&1)
B = matmul(B, A, m);
A = matmul(A, A, m);
n >>= 1;
}
return B;
}
Mod / 剰余
Inverse / 逆元
int mod_inv(int a, int m) {
int x, y;
extgcd(a, m, x, y);
return ((x % m) + m) % m;
}
Factorial / 階乗
vector<int> fac(M, 1);
void init(int m) {
for (int i=1; i<m; ++i)
fac[i] = fac[i-1] * i % m;
}
int mod_fac(int n, int m, int& e) {
e = 0;
if (n==0)
return 1;
int r = mod_fac(n/m, m, e);
e += n/m;
if (n/m%2==1)
return (m-fac[n%m]) * r % m;
else
return fac[n%m] * r % m;
}
Binary Coefficient / 二項係数
int mod_binom(int n, int k, int m) {
if (n<0 || k<0 || n<k)
return 0;
int e1, e2, e3;
int a1=mod_fac(n, m, e1), a2=mod_fac(n-k, m, e2), a3=mod_fac(k, m, e3);
if (e1>e2+e3)
return 0;
return a1 * mod_inv(a2*a3%m, m) % m;
}
vector<int> fac(N, 1), inv(N, 1), finv(N, 1);
void init(int n, int m) {
for (int i=2; i<=n; ++i) {
fac[i] = fac[i-1] * i % m;
inv[i] = m - inv[m%i] * (m/i) % m;
finv[i] = finv[i-1] * inv[i] % m;
}
}
int mod_binom(int n, int k, int m) {
return fac[n] * (finv[n-k] * finv[k] % m) % m;
}
Linear Algebra / 線型代数
Linear Congruence Equation / 線形合同式
vector<int> A(N), B(N), M(N);
pair<int, int> linear_congruence(int n) {
int x=0, m=1;
for (int i=0; i<n; ++i) {
int a=A[i]*m, b=B[i]-A[i]*x, d=gcd(a, M[i]);
if (b%d!=0)
return {0, -1};
int y = (b/d) * mod_inv(a/d, M[i]/d) % (M[i]/d);
x += m*y;
m *= M[i]/d;
}
return {(x%m+m)%m, m};
}
Gaussian Elimination / ガウスの消去法
vector<vector<double>> A(N, vector<double>(M));
vector<double> B(N), sol(M);
int gauss(int n, int m) {
vector<vector<double>> mat(n, vector<double>(m+1, 0));
for (int i=0; i<n; ++i) {
for (int j=0; j<m; ++j)
mat[i][j] = A[i][j];
mat[i][m] = B[i];
}
vector<int> piv(m, -1);
for (int c=0, r=0; c<m && r<n; ++c) {
int p = r;
for (int i=r; i<n; ++i) {
if (abs(mat[i][c])>abs(mat[p][c]))
p = i;
}
if (abs(mat[p][c])<EPS)
continue;
swap(mat[r], mat[p]);
piv[c] = r;
for (int i=0; i<n; ++i) {
if (i==r)
continue;
double cf = mat[i][c] / mat[r][c];
for (int j=c; j<=m; ++j)
mat[i][j] -= mat[r][j] * cf;
}
r += 1;
}
for (int j=0; j<m; ++j) {
if (piv[j]!=-1)
sol[j] = mat[piv[j]][m] / mat[piv[j]][j];
}
for (int i=0; i<n; ++i) {
double sum = 0;
for (int j=0; j<m; ++j)
sum += mat[i][j] * sol[j];
if (abs(sum-mat[i][m])>EPS)
return 0;
}
for (int j=0; j<m; ++j) {
if (piv[j]==-1)
return INF;
}
return 1;
}
Fast Fourier Transform / 高速フーリエ変換
using cd = complex<double>;
const double PI = acos(-1);
void fft(vector<cd>& a, bool inv=0) {
int n = a.size();
for (int i=1, j=0; i<n; ++i) {
int b = n>>1;
for (; j&b; b>>=1)
j ^= b;
j ^= b;
if (i<j)
swap(a[i], a[j]);
}
for (int l=2; l<=n; l*=2) {
double ag = 2*PI / l * (inv?-1:1);
cd wl(cos(ag), sin(ag));
for (int i=0; i<n; i+=l) {
cd w(1);
for (int j=0; j<l/2; ++j) {
cd u=a[i+j], v=a[i+j+l/2]*w;
a[i+j] = u+v;
a[i+j+l/2] = u-v;
w *= wl;
}
}
}
if (inv) {
for (int i=0; i<n; ++i)
a[i] /= n;
}
}
vector<int> multiply(vector<int> a, vector<int> b) {
vector<cd> fa(a.begin(), a.end()), fb(b.begin(), b.end());
int n = 1;
while (n<a.size()+b.size())
n *= 2;
fa.resize(n);
fb.resize(n);
fft(fa);
fft(fb);
for (int i=0; i<n; ++i)
fa[i] *= fb[i];
fft(fa, 1);
vector<int> res(n);
for (int i=0; i<n; ++i)
res[i] = round(fa[i].real());
return res;
}
Others / その他の
Geometry / 幾何
Geometry Library / 幾何ライブラリ
using Point = complex<double>;
double dot(const Point &a, const Point &b) {
return a.real()*b.real() + a.imag()*b.imag();
}
double det(const Point &a, const Point &b) {
return a.real()*b.imag() - a.imag()*b.real();
}
bool compare(const Point &a, const Point &b) {
return a.real()!=b.real() ? a.real()<b.real() : a.imag()<b.imag();
}
struct Line {
Point a, b;
Line() = default;
Line(Point a, Point b) : a(a), b(b) {}
};
struct Segment : Line {
Segment() = default;
Segment(Point a, Point b) : Line(a, b) {}
};
struct Circle {
Point p;
double r;
Circle() = default;
Circle(Point p, double r) : p(p), r(r) {}
};
int ccw(Point a, Point b, Point c) {
b -= a, c -= a;
if (det(b, c)>EPS)
return +1;
if (det(b, c)<-EPS)
return -1;
if (dot(b, c)<-EPS)
return +2;
if (norm(b)<norm(c)-EPS)
return -2;
return 0;
}
bool intersect(Segment s, Point p) {
return ccw(s.a, s.b, p) == 0;
}
bool intersect(Segment s, Segment t) {
return ccw(s.a, s.b, t.a)*ccw(s.a, s.b, t.b)<=0 && ccw(t.a, t.b, s.a)*ccw(t.a, t.b, s.b)<=0;
}
bool intersect(Line l, Point p) {
return abs(ccw(l.a, l.b, p))!=1;
}
bool intersect(Line l, Segment s) {
return det(l.b-l.a, s.a-l.a)*det(l.b-l.a, s.b-l.a)<EPS;
}
int intersect(Line l, Line m) {
if (intersect(l, m.a) && intersect(l, m.b))
return 2;
if (abs(det(l.b-l.a, m.b-m.a))>EPS)
return 1;
return 0;
}
Point projection(Line l, Point p) {
double t = dot(p-l.a, l.b-l.a)/norm(l.b-l.a);
return l.a + (l.b-l.a)*t;
}
Point reflection(Line l, Point p) {
return p + (projection(l, p)-p)*2.0;
}
Point crosspoint(Line l, Line m) {
double A = det(l.b-l.a, m.b-m.a);
double B = det(l.b-l.a, l.b-m.a);
if (A==0)
return Point(1/EPS, 1/EPS);
return m.a + (m.b-m.a)*B/A;
}
double distance(Point a, Point b) {
return abs(b-a);
}
double distance(Segment s, Point p) {
Line l(s.a, s.b);
Point h = projection(l, p);
if (intersect(s, h))
return abs(p-h);
return min(abs(s.a-p), abs(s.b-p));
}
double distance(Segment s, Segment t) {
if (intersect(s, t))
return 0;
return min({distance(s, t.a), distance(s, t.b), distance(t, s.a), distance(t, s.b)});
}
double distance(Line l, Point p) {
return abs(det(p-l.a, l.b-l.a))/abs(l.b-l.a);
}
double distance(Line l, Segment s) {
if (intersect(l, s))
return 0;
return min(distance(l, s.a), distance(l, s.b));
}
double distance(Line l, Line m) {
if (intersect(l, m))
return 0;
return distance(l, m.a);
}
int intersect(Circle c, Line l) {
Point h = l.a + (l.b-l.a) * dot(c.p-l.a, l.b-l.a)/norm(l.b-l.a);
double d = abs(c.p-h);
if (c.r<d-EPS)
return 0;
if (abs(c.r-d)<EPS)
return 1;
return 2;
}
int intersect(Circle c1, Circle c2) {
double d = abs(c1.p-c2.p);
if (c1.r+c2.r<d-EPS)
return 4;
if (abs(c1.r+c2.r-d)<EPS)
return 3;
if (abs(abs(c1.r-c2.r)-d)<EPS)
return 1;
if (abs(c1.r-c2.r)>d+EPS)
return 0;
return 2;
}
vector<Point> crosspoint(Circle c, Line l) {
vector<Point> res;
Point h = l.a + (l.b-l.a) * dot(c.p-l.a, l.b-l.a)/norm(l.b-l.a);
int mode = intersect(c, l);
if (mode==1) {
res.push_back(h);
}
if (mode==2) {
double b = sqrt(c.r*c.r-norm(h-c.p));
Point e = (l.b-l.a)/abs(l.b-l.a);
res.push_back(h-e*b);
res.push_back(h+e*b);
}
return res;
}
vector<Point> crosspoint(Circle c1, Circle c2) {
vector<Point> res;
double d = abs(c2.p-c1.p);
int mode = intersect(c1, c2);
if (mode==3) {
res.push_back(c1.p + (c2.p-c1.p)*c1.r/(c1.r+c2.r));
}
if (mode==1) {
if (c2.r<c1.r-EPS)
res.push_back(c1.p + (c2.p-c1.p)*c1.r/d);
else
res.push_back(c2.p + (c1.p-c2.p)*c2.r/d);
}
if (mode==2) {
double a = (c1.r*c1.r+d*d-c2.r*c2.r) / (2*d);
double b = sqrt(c1.r*c1.r-a*a);
Point e = (c2.p-c1.p)/abs(c2.p-c1.p);
res.push_back(c1.p + e*a - e*Point(0, 1)*b);
res.push_back(c1.p + e*a + e*Point(0, 1)*b);
}
return res;
}
vector<Line> tangent(Circle c, Point p) {
vector<Line> res;
double d = abs(p-c.p);
if (abs(d-c.r)<EPS) {
res.push_back(Line(p, p+(p-c.p)*Point(0, 1)));
}
if (d>c.r+EPS) {
vector<Point> cp = crosspoint(c, Circle(p, sqrt(d*d-c.r*c.r)));
res.push_back(Line(cp[0], p));
res.push_back(Line(cp[1], p));
}
return res;
}
vector<Line> tangent(Circle c1, Circle c2) {
vector<Line> res;
double d = abs(c2.p-c1.p);
Point u = (c2.p-c1.p)/abs(c2.p-c1.p);
Point v = u*Point(0, 1);
for (int s : {-1, 1}) {
if (abs(d)<EPS)
break;
double cs = (c1.r+c2.r*s)/d;
if (abs(cs*cs-1)<EPS) {
Point U = (cs>0 ? u : -u);
res.push_back(Line(c1.p+U*c1.r, c1.p+U*c1.r+v));
}
else if (1-cs*cs>EPS) {
Point U = u*cs, V=v*sqrt(1-cs*cs);
res.push_back(Line(c1.p+(U+V)*c1.r, c2.p-(U+V)*(c2.r*s)));
res.push_back(Line(c1.p+(U-V)*c1.r, c2.p-(U-V)*(c2.r*s)));
}
}
return res;
}
int contain(vector<Point> g, Point p) {
bool in = false;
int n = g.size();
for (int i=0; i<n; ++i) {
Point a=g[i]-p, b=g[(i+1)%n]-p;
if (a.imag()>b.imag())
swap(a, b);
if (a.imag()<EPS && b.imag()>EPS && det(a, b)>EPS)
in = !in;
if (abs(det(a, b))<EPS && dot(a, b)<EPS)
return 1;
}
return (in ? 2 : 0);
}
double area(vector<Point> g) {
double a = 0;
int n = g.size();
for (int i=0; i<n; ++i)
a += det(g[i], g[(i+1)%n]);
return a*0.5;
}
Convex Hull / 凸包
vector<Point> convex_hull(vector<Point> ps) {
sort(ps.begin(), ps.end(), compare);
int n=ps.size(), k=0;
vector<Point> qs(2*n);
for (int i=0; i<n; ++i) {
while (k>1 && det(qs[k-1]-qs[k-2], ps[i]-qs[k-1])<EPS)
k--;
qs[k++] = ps[i];
}
for (int i=n-2, t=k; i>=0; --i) {
while (k>t && det(qs[k-1]-qs[k-2], ps[i]-qs[k-1])<EPS)
k--;
qs[k++] = ps[i];
}
qs.resize(k-1);
return qs;
}
double max_distance(vector<Point> ps) {
vector<Point> qs = convex_hull(ps);
if (qs.size()==2)
return abs(qs[1]-qs[0]);
int i=0, j=0, n=qs.size();
for (int k=0; k<n; ++k) {
if (compare(qs[k], qs[i]))
i = k;
if (!compare(qs[k], qs[j]))
j = k;
}
double res = 0;
int si=i, sj=j;
while (i!=sj || j!=si) {
res = max(res, abs(qs[j]-qs[i]));
if (det(qs[(i+1)%n]-qs[i], qs[(j+1)%n]-qs[j])<-EPS)
i = (i+1)%n;
else
j = (j+1)%n;
}
return res;
}
Sweep Line / 平面走査
void solve(int n) {
vector<pair<double, int>> v;
for (int i=0; i<n; ++i) {
v.push_back({"<x_left[i]>", i});
v.push_back({"<x_right[i]>", i+n});
}
sort(v.begin(), v.end());
set<pair<double, int>> s;
for (auto p : v) {
int i = p.second%n;
if (p.second<n) {
set<pair<double, int>>::iterator it = "<binary search y[i]>";
"<construct solution>":
s.insert({"<y[i]>", i});
}
else
s.erase({"<y[i]>", i});
}
}
Plane Divide and Conquer / 平面の分割統治法
using Point = complex<double>;
bool compare_x(const Point &a, const Point &b) {
return a.real()<b.real();
}
bool compare_y(const Point &a, const Point &b) {
return a.imag()<b.imag();
}
vector<Point> ps;
void rec(int l, int r) {
if (l==r)
"<base case>";
int m = (l+r)/2;
rec(l, m);
rec(m+1, r);
inplace_merge(ps.begin()+l, ps.begin()+m+1, ps.begin()+r+1, compare_y);
"<combine>";
}
sort(ps.begin(), ps.end(), compare_x);
String / 文字列
Rolling Hash / ローリングハッシュ
ll hashing(string s) {
ll p = 257, m = 1e9+9;
ll h = 0;
for (char c : s)
h = (h*p + c) % m;
return h;
}
int search(string s, string t) {
int sl=s.size(), tl=t.size();
ll p = 257, m = 1e9+9, pp=1, sh=0, th=0;
for (int i=0; i<tl; ++i) {
pp = (pp*p) % m;
sh = (sh*p + s[i]) % m;
th = (th*p + t[i]) % m;
}
for (int i=0; i+tl<=sl; ++i) {
if (sh==th)
return i;
if (i+tl<sl)
sh = (sh*p + s[i+tl] - s[i]*pp + m) % m;
}
return -1;
}
Suffix Array / 接尾辞配列
vector<int> suffix_array(string s) {
s += '$';
int n=s.size(), cls=256;
vector<int> p(n), c(n), cnt(max(256, n)), pn(n), cn(n);
for (int i=0; i<n; ++i) {
p[i] = i;
c[i] = s[i];
}
for (int h=1; h<=n; h*=2) {
for (int i=0; i<n; ++i)
p[i] = (p[i]+n-h/2)%n;
fill(cnt.begin(), cnt.begin()+cls, 0);
for (int i=0; i<n; ++i)
cnt[c[p[i]]] += 1;
for (int i=1; i<cls; ++i)
cnt[i] += cnt[i-1];
for (int i=n-1; i>=0; --i)
pn[--cnt[c[p[i]]]] = p[i];
cn[pn[0]] = 0;
cls = 1;
for (int i=1; i<n; ++i) {
pair<int,int> cur = {c[pn[i]], c[(pn[i]+h/2)%n]};
pair<int,int> pre = {c[pn[i-1]], c[(pn[i-1]+h/2)%n]};
if (cur!=pre)
cls += 1;
cn[pn[i]] = cls-1;
}
p.swap(pn);
c.swap(cn);
}
return p;
}
int search(string s, string t, vector<int> sa) {
int l=-1, r=sa.size();
while (r-l>1) {
int m = (l+r)/2;
if (s.compare(sa[m], t.size(), t)>0)
r = m;
else
l = m;
}
return s.compare(sa[l], t.size(), t)==0 ? sa[l] : -1;
}
Game / ゲーム
Nim / Nim
vector<int> arr(N);
bool nim(int n) {
int x = 0;
for (int i=0; i<n; ++i)
x ^= arr[i];
return x > 0;
}
Grundy Number / Grundy数
vector<int> gru(X);
void build(int x) {
for (int i=1; i<=x; ++i) {
set<int> s;
for ("<next state>") {
s.insert(gru["<next state>"]);
}
int g = 0;
while (s.count(g)>0)
g += 1;
gru[i] = g;
}
}
Technique / テクニック
Prefix Sum / 累積和
vector<int> arr(N), sum(N);
void build(int n) {
for (int i=0; i<n; ++i)
sum[i+1] = sum[i] + arr[i];
}
int query(int l, int r) {
return sum[r+1] - sum[l];
}
vector<vector<int>> arr(N, vector<int>(N));
vector<vector<int>> sum(N, vector<int>(N));
void build(int nx, int ny) {
for (int i=0; i<nx; ++i) {
for (int j=0; j<ny; ++j) {
sum[i+1][j+1] = sum[i][j+1] + sum[i+1][j] - sum[i][j] + arr[i][j];
}
}
}
int query(int lx, int rx, int ly, int ry) {
return sum[rx+1][ry+1] - sum[lx][ry+1] - sum[rx+1][ly] + sum[lx][ly];
}
Two Pointers / しゃくとり法
vector<int> arr(N);
void solve(int n) {
int i="<>", j="<>";
while ("<>") {
while ("<>") {
"<modify i>";
"<update>":
}
"<modify j>";
"<update>":
}
}
Meet in the Middle / 半分全列挙
void solve(int n) {
vector<int> s;
for ("<1st half>")
s.push_back("<>");
sort(s.begin(), s.end());
for ("<2nd half>")
"<binary search>";
}
Coordinate Compression / 座標圧縮
int compress(int n, vector<int> &x1, vector<int> &x2, int w) {
vector<int> xs;
for (int i=0; i<n; ++i) {
for (int d=-1; d<=1; ++d) {
int t1=x1[i]+d, t2=x2[i]+d;
if (0<=t1 && t1<w)
xs.push_back(t1);
if (0<=t2 && t2<w)
xs.push_back(t2);
}
}
sort(xs.begin(), xs.end());
xs.erase(unique(xs.begin(), xs.end()), xs.end());
for (int i=0; i<n; ++i) {
x1[i] = find(xs.begin(), xs.end(), x1[i]) - xs.begin();
x2[i] = find(xs.begin(), xs.end(), x2[i]) - xs.begin();
}
return xs.size();
}
Binary Lifting / ダブリング
vector<vector<int>> nex(LOG_K, vector<int>(N));
void build(int n, int k) {
for (int i=0; i<n; ++i)
nex[0][i] = "<next position>";
for (int i=1; i<int(log2(k))+1; ++i) {
for (int j=0; j<n; ++j)
nex[i][j] = nex[i-1][nex[i-1][j]];
}
}
int query(int p, int d) {
for (int i=0; d>0; ++i, d>>=1) {
if (d&1)
p = nex[i][p];
}
return p;
}
Imos Algorithm / いもす法
vector<vector<int>> G(W, vector<int>(H));
void solve(int n, int w, int h) {
for (int i=0; i<n; ++i) {
"< Rectangle: (lx~rx, ly~ry) >";
G[lx][ly] += 1;
G[lx][ry] -= 1;
G[rx][ly] -= 1;
G[rx][ry] += 1;
}
for (int i=0; i<=w; ++i) {
for (int j=1; j<=h; ++j)
G[i][j] += G[i][j-1];
}
for (int j=0; j<=h; ++j) {
for (int i=1; i<=w; ++i)
G[i][j] += G[i-1][j];
}
}