biostats.spearman_rank_correlation#
- biostats.spearman_rank_correlation(data, x, y)[source]#
Test whether there is a correlation between two numeric variables with nonparametric methods.
- Parameters:
- data
pandas.DataFrame
The input data. Must contain at least two numeric columns.
- x
str
The first numeric variable.
- y
str
The second numeric variable. Switching the two variables will not change the result.
- data
- Returns:
- summary
pandas.DataFrame
The correlation coefficient.
- result
pandas.DataFrame
The degree of freedom, t statistic, and p-value of the test.
- summary
See also
correlation
The parametric version of Spearman’s rank correlation.
Examples
>>> import biostats as bs >>> data = bs.dataset("spearman_rank_correlation.csv") >>> data Volume Pitch 0 1760 529 1 2040 566 2 2440 473 3 2550 461 4 2730 465 5 2740 532 6 3010 484 7 3080 527 8 3370 488 9 3740 485 10 4910 478 11 5090 434 12 5090 468 13 5380 449 14 5850 425 15 6730 389 16 6990 421 17 7960 416
We want to test whether there is a correlation between Volume and Pitch.
>>> summary, result = bs.spearman_rank_correlation(data=data, x="Volume", y="Pitch") >>> summary Coefficient Correlation -0.763036
The correlation coefficient is given.
>>> result D.F. t Statistic p-value Model 16 -4.722075 0.00023 ***
The p-value < 0.001, so there is a significant correlation between Volume and Pitch.